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The state of a gas is characterized by occupation numbers of cells in u-space. 
The mean values and fluctuations of these numbers are studied with the 
help of a master equation. The results are discussed within the framework 
of the theory of random forces. A n equation of motion of the time-correlation 
function (TCF) is derived and it is shown that the temporal development 
of the TCF can be described by a linearized Boltzmann equation. 
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1. I N T R O D U C T I O N  

With in  the f ramework of the theory of light scattering, it is necessary to 

investigate the t ime-correlat ion funct ion (TCF)  for certain observables. The 
purpose of this paper  is to study the T C F  for a set of  macroscopic observables 
- - i n  this case, occupat ion numbers  of cells in/z-space which characterize the 

coarse-grained state of a gas. V. Leeuwen and Yip ~2~ have derived a linearized 
Bol tzmann  equ~/tion as the equat ion of mot ion  for the "~ TCF~ Their  
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paper takes as its starting point an Ursell expansion of the time-displacement 
operator. Since we only. deal with macroscopic observables, we choose 
another way. Our starting point is a master equation for the motion of a 
coarse-grained density in F-space. 

In Section 2, we define the coarse-grained TCF. In order to derive an 
equation of motion for this TCF, it is necessary to have the equation of 
motion for the coarse-grained density. Furthermore, we must have equations 
for the mean occupation numbers and their correlations. From these 
equations, we immediately get the equation of motion for the TCF in 
equilibrium. This can be brought into the form of a linearized Boltzmann 
equation with the help of assumptions which are discussed later in Section 6. 
Before this more rigorous treatment, we discuss the results within the frame- 
work of the theory of random forces in Section 5. It is possible, for instance, 
to rederive in this way the equations of motion for the mean occupation 
numbers and their correlations. In Section 6, we discuss the assumptions 
mentioned above. We introduce a new coarse-grained probability Po in 
2-'-space. The moments of this probability fulfill the same equations as the 
media values do, which are defined in Section 4. B$ solving these equations. 
we see that indeed the lineafized Boltzmann equation is a good approximation 
for describing the coarse-grained TCF. 

The connection between the derivation in Ref. 2 and that given here 
wiI1 be investigated in greater detail in a succeeding paper. 

2. D E F I N I T I O N  OF THE COARSE-GRAINED TIME- 
CORRELATION F U N C T I O N  (TCF) 

We consider a set M of systems S with fixed energy E, volume ~'. and 
number of particles N. Each system can be described at any instant t by a 
point P(S)= (q~(t), p~(t))~ if, where /" is the /-'-space, or by the corre- 
sponding distribution function " 

fe(r ,  p, t) = Z 8(r -- qv(t)) 3(p -- p~(t)) = fe(x, t) 

which is defined on the/,-space. We divide the/x-space into cells Zx of equal 
volume A = A r A p : / z =  U Z ~ ,  where Z ~ - ~ Z  s =  ~ for i = j .  E a c h f  
yields a set of occupation numbers {Ni} defined by 

% = "f f (x ,  t) >(x) dx 

X,/x) = 1 for x e Z ~  (1) 

= 0 otherwise 
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The set {N,J is the occupat ion number  vector: IN,', --- 9l. Thus ~ e ' h a v e  
constrtlcted a coarsening mapp ing  A of  the set of  the distr ibution functions 
into the set of  the occupat ion number  vectors:  A f =  {N~[f]] = "31[f]. 

Now,  each 9l corresponds  to a domain  $[ 'J t]  C .g', defined by 

P ~ $ [9 l ]  ~ Afp = 9l (2) 

The measure of  $ [9! ]  is 

/~[9~] = N! A~'/1- [ N i ]  (3) 

This is of  course the well-known Bol tzmann measure.  Now ~e  consider all 
systems S in M with P(S)e $[9 l ]  at t = 0. All systems will change their 
domains  according to the Hami l ton  equations.  Thus,  after  a t ime r,  some 
systems will be found in another  domain  $[').R]. So we are led to the concept  
o f  a t ransi t ion probabil i ty.  We do not  discuss here the difficulties involved. 
Let P(fll ] 9,1l, r)  be the probabi l i ty  of  finding the vector  93l after the t ime r.  
Then ~e  get the following expression for the probability'  of  finding a system S 
which t ransforms during the time t f rom '319l] into 2~[9.R]:. 

P ( ~ ,  92l, t) = P ( ~ ,  O) P(gl  lint, t) (4) 

Now we can define the TCF:  

Kis(t, r) = ~ POt ,  t) P(9[ j 9.R, r) NiM~ 
9 t ~  

(5) 

I f  we wan t  t o  calculate the T C F  for an equil ibrium ensemble M, we must  
know P<'~[91] and P ( N  [ 9.R, r). This can be done with the help of  the mas ter  
equat ion of  Ludwig <11 In the next section, we give a short  derivat ion of  this 

�9 equation.  

3. E Q U A T I O N  OF  M O T I O N  FOR T H E  T R A N S I T I O N  
P R O B A B I L I T Y  P(91 I '~Jt, ~) 

The cells Z~ can be labeled by the coordinates  of  their centers. Each  
system is assumed to change only due to binary collisions and streaming. 
The length l of  the space cell is choosen to be much  larger than  c; 1' '  = k, 
where c~ is the cross section. Therefore  each collision occurs in a well-defined 
space cell. Each system which is scattered into a domain  $[9 t ]  during a t ime 
At is found immediate ly  before in a domain  $ [ 9 l  -r- r/,st~t], with 
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8 ,  being the Kronecker  symbol.  Conservat ion of energy and m o m e n t u m  
yields 

v~ ~" + vfi ~ vff" -i- vt 2, vi -i- vj ~ Vk --- V~ 

where v = m-~p. Fur the rmore ,  we have r~ ---- r~ = rk = r t .  In the same 
way, we describe a system scattered out  immediate ly  after the collision by a 
vector  9I § "q~'/k'~' �9 Therefore  we need to count  only these collisions for  
calculat ion of  the collision balance.  We now ask for  the probabi l i ty  
P(9~ -F r/,~.~ '32, At). The concept  of  probabi l i ty  only makes  sense if the 
systems in ~[9~ § r/~jk~] can be regarded at any instant  as distr ibuted at 
r andom.  This corresponds  to the M a r k o v  assumpt ion .  Fur thermore ,  we 
assume the validity of  the Stosszahlansatz in the fo rm given belong. Thi~ 
ansatz yields the right numbm of  collisions (v i ,  vj) --+ (v~:, vt) in the mean ,  
where the mean  value is taken over  a set of  independent  systems in 
~3[~ a- r/;s~]. This assumpt ion  is more  general  than  the cor responding  one 
for  a single system. We now turn to the influence of  the s t reaming processes. 
I f  there were no collisions, each system in '/319l] would move into 2~[9~'] 
during At, where 9t' is defined as follows: 

9l'(r,: + vi At, vi) = (91)(L , v,) ----- N ,  

These remarks  are made  in order  to clarify the following formal ism.  
The tempora l  change of  P(9~ 9Jt, t) is described by 

P(91 9J~', At)  = (.9l i 1 i 9J/) --}- / l t(gl i O l '.).It) (6) 

with 

- 5. w(O ij) 6(9t, '~0 x.% 

The prime indicates that  the sum excludes all terms with (.,5;) = (kl). Far ther  
on, we need 

P(gl  [ ')Jl, t + t ' )  = ~ P O t  [ ~ ,  t) P(~t 9Jt, t ' )  (7) 
'.R 

where t, t' > 0. F r o m  Z:m P(gl i 9.R, At) --- 1, we have 

(~-R I Q ] ').R) = 0 (8) 
:))~ 

Therefore  we get 

( g t l Q ] 9 3 t ) =  - -  ~ ( , 3 I [ Q [ g J Q  
91 ~ '.}Jr 
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For w(0" kl) ,  we get from the above remarks 

w ( ( / [ k l )  = c~0j I kl)(A va. A vdd r) 8( r , ,  rD 8(ra , rD 3(rz, r,.). (9) 

cr(i j ' lkl)  is the usual differential cross section as it appears in the Boltzmann 
equation written down in the cell language: 

N(r,. + v~ At,  vi , t + A t )  - -  N ( r i ,  v;,  t) 

= A t 2 ' ( A  vk A v~/A r) cr(0" kl)(N~N~ --  N~N~) (10) 

For hard spheres, for instance, we get 

~(0"I nm) = k 2 8 ( v  m -~- V n ,  V i -i- V.i) 6 (Vn  "~ -+- V,,z ~ , Vi e @ Vfi) 0 -5 (1 l )  

where c is the length of  the velocity cell. Therefore Av = c a. Now, cr(0" ' kl)  
is assumed to have the following symmetry properties: 

~((i i k / )  = o (k /  l ~j) = r l k / )  (12) 

From ( 6 ) - ( 8 ) ,  w e  have, after a short calculation, 

P(gt [ 9.R', t - r  A t )  - -  P(9~ i 9)~, t) 

- -  - -  2 ~ A t { y '  w(ij  i k l ) ( M  , ~ 1)(Mj + I) P(91 [ 9X + rim.z) 

- -  y - 'w( i j  i k l )  M ,  M i P ( 9 t  { rot, t)} ( 1 3 )  

This is the master equation. For more exact derivations of  this equation, 
see Schr6ter ~3j and FOrster (4). It is possible to show the validity of  an 
H-theorem by use of the func t iona l  

5 [ P O t  ! '))L t)] = y- p(gt ! ')J~, t) log p(9l.  ')J~, t ) d g J q  (14) 
'))t 

' H-theorem y~em~ " with P(gt i 93L t) =/~[gX] p(gt i 9JL t). This " 'J-~~ 

lira P(gl I 9X, t) =/z[gX] D, D = const (15) 

. E O U A T I O N S  OF M O T I O N  FOR THE MEAN 
A N D  {MiMi) 

We have 

( M , )  = y- p(gl [ ffJL t)/x[9)t] Mi 

( M c M j >  = y- p (~  I 9JL t) tz[gJt] M~M~ 

VALUES ( M i }  
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We multiply (13) by M : ,  M , M ; .  We define 

( M i M / )  = (M~)(Mj> + Gij (16) 

With the symmetry properties of w( i j i k l )  [Eqs. (12)] and the properties of 
/x[gJl], we get, after s u m m a t i o n ,  

[ (M}(L + v~ At,  v ,  t + A t )  --  ( m}('r~ , v~ , t)](At) -1 

= D~ (:v/) (definition) 

= ~ '  w(mn ij)[(M~}<M,,~} --  (Mz ) (M~ ' ]  '-- V '  w(nmi i j ) [G ..... -- C,.j 

(17) 

Whenever it is necessary, we write instead of <M,~ more accurately 
(M' / ( r~ ,  v~). Equation (17) agrees with (10) except for the second term on 
the r.h.s, of  (17), so that (17) is more general than the Boltzmann equation. 
Analogously, the assumptions 

r : / ~M~M~Mk> = (M~>(M~><Mk} + (M~> Gi~ =- <Mj3 G:~ + ,,.~,:> G,.: (18) 

yields the following equation for G~: �9 

At[G(r~ + v~ At, r: + v~ At, v~ v: t _ At)  --  a.(t)] 
-= DijG (definition) 

: ' ,/ \ G.,,.) "x (,.M,,,/\M,~/ + 

"+ [Z' w(mn ] j l ) ( (M, , )  G,~ -+- (3,I,~} G,,~ 

- -  ( M / )  Gu - -  (M~}  Gj~) 4- {i *--~j]] (19) 

Equation (18) seems to be an adhoc  assumption, but its consequences in (19) 
can be clarified by a heuristic argument: we are only interested in the macro- 
scopic properties of the system. Ludwig m has shown that this leads in a 
natural way to (19). We now introduce the following abbreviations: 

~" w(mn i i j ) ( (Mi:}(Mt}  --  (M~}(Mj}) = Bi[(gJ/)] 

~ '  w(mn~tij)(Gmn -- Gi~) = Bi[~] 

�89 ~ '  w(mn ! kl)(3ik § 3 ,  -- 8i,,, -- 3i~)(8:k + 3:~ -- 3~,, -- 3 j~)(M, , ) (M,)  

- L~A(:~Jt/] 

= L~j[~] 

[~' w(mn ',.il)(<M,,} G,,~ + (M,,) G,,,~ --  (M~> G,~ -- <M,/: G;i)] § [i ~-~j] 

: H~j[<gl>, (fi] (20) , 
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Thus we have for (16) and (19) 

D/ , ]v / )  = B~[('331/\] + a , [ (s]  
I % �9 = ~ " L,.j[(5] + H/j[qgJt), (9] (21) o i j a  L~s[(9)t)] - r  

In addit ion,  we give some remarks  on the order  of  magni tude  o f  the cells. 
The Stosszahlansatz for  a single system can be justified only for  times At ~_ t l ,  
with b = A(r)  -~, A being the mean free path.  Therefore  we choose  

l ~ A (22) 

since smaller  lengths yield finer propert ies,  which cancel out  by coarsening 
in time. Fur thermore ,  the cells Z~ with ]c~! ~ (,c) should contain many  
particles, because the occupat ion  numbers  Nz are macroscopic  observables.  
Fo r  (v) ,  we have \r?" '" = (2kTm-~)w ~ = b -~/~. I f  we demand ,  for example ,  
that  

( ( N ~ -  (Ni}eq)o'}((Ni}eq) -~ < �9 

we get 

Therefore  we have 

e-1 -<'I .:.N~3 eq. _~ n(brr<) a:~ Ar Av 

(A v) ha~ 2 ~ r/a/2[n(A r) E] -I 

Let us choose,  for  instance, 

n = 3 • I0 w 

Then we get 

cm-a;  l = 10 -4 cm; e = 10 -3 

c (v )  -~ >~ 1/20 (23) 

We now are able to write down the equat ion for the T'CF in equil ibrium. 
With (5) and (21), we get 

( / I t )  -1 [K(r i ,  v~, r; § v~ At,  v i ,  t -i- A t )  - -  Kij(t)] 

= ~ D/x[9I](B~[(gJI)] + Bj[(S]) (24) 

Here ,  (gJl)(t),  (5(t) are solutions of  (21) with the initial condit ions 
(9.1l)(0) = 9l, (5(0) = 0. When  (5 is d ropped  and  the remaining Bol tzmann 
term is linearized with respect to equil ibrium, the result is 

D~K, = ~ '  w(kl j jm)((i 'v/k)eq K a  --  (Mz)  eq Kik 

__ (,~[~)eq K i m  - -  ( M m )  eq K~j) (25) 
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where ~.e have used the fact that B,[~9)~ eq] 0. We see at once that 

R~j = ~ D/~[eJI] P(~.1~193~, t)(Ni -- (Ni.eq)(M - -  ~M;, eq) (26) 
:l)l,,.It 

fulfills (25), too, with the initial condition 

Ris(0) ----- ~ D/x[Ol](N~ -- (Ni;eq)(Nj -- ( N j  eq) 

= N eq 3i~ (27) 

This result agrees with Ref. 1. In a following section, we derive equations 
which enable us to test the validity of this equation. 

5. R E L A T I O N  T O  T H E  T H E O R Y  OF R A N D O M  FORCES 

We describe the motion of  any system S ~ M by the following stochastic 
equation: 

,At  

DiM[S] = B~[gJI[S]] -- (At) -1 [ F~(t 4- r)[S] &- (28) 
*' 0 

where 9)~[S] is the vector, which corresponds to S. Taking the mean value, 
we get 

At 

D~<M) = Bi[(gJl)] + Bi[~] + (At) -z ( (Fi(t + ~-)} dr 
4 0 

Comparison with (21) yields 

(At) -1 (n~ (Fi(t + ~-);: dr = 0 (29) 
" 0  

S corresponds to a random variable in ~[9)t]. So, taking the mean value o~,er 
all S can be performed in the following way: 

2 P(S) A(S) = Z P(~JJI) Z P(S! ~t) A(S) 
s ~0t s e ' ~ [ g J l ]  

where A(S) is an observable depending on S and P(S 9)t) is the conditional 
probability, From the definition of~i, we get 

D~;G = (At)-1[(M(ri + v i At, vi) M(rj + vj At, v;))(t --' At) -- (,U',M/ (t) 

- -  {M(r~ + viAt, v~))( t+ At)(M(rj + v i At, v~)~(t + At) 

4- (M,)(t)(M~)(t)] (30) 
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Inserting (28) into (30) yields, after a short calculation, 

Di~G = [~MiB~[gJl])(t) + (At) -1 (M, j'~tFj(t + r),tr) --~M~.~B~[9.R]) 

+ �89 At (Bi[gJl] B~-[gX]) --  �89 At(B,[gJ~])(Bj[gX]) 

( i = f  ' ) + �89 (At) -1 F~(t + r)Fj(t + r') dr dr' 
0 0 

With (18) and (21), we get, after dropping terms O(At), from (31), 

DziG = H~j[,(gJI), (5 ] - f - [ (At )  -1 (M, f~*F/t + .)d-~) 

(i 7 )t -~ (A t)-I j F~.(t + r) 6-,.(t + r ')  d7 d~-' 

+ [i~-*j] (32) 

From the Markov  assumption,  if follows that 

2 P(s 19J0 AIS] = AI'a)q 

is completely defined by 93l, because P(SI 9Jl) does not  depend on the time t 
and the probabil i ty P(gX, t). N o w  let us suppose that  

2 P(S 1 9-10 F,[S] ----- PjIg.lt] (33) 
Sea~[')X] 

is different from zero. We consider an ensemble with (5 = 0 and .9.11) = 9.1~. 
initially. Then we have 

) ;= .a, F~(r) dr = Y. POX)/?~[gX] dr 
�9 o o ~J~ 

(34) 
. A t  

= j -p,I~Jq d ,  = o 
0 

from (29), in contradiction to our supposition. Therefore we get from (32) 

~ t  

D,aG = (/It)-a j J (E,(t + r) F / t +  r')) dr dr' + H~jI<9.R), (9] (35) 
o 
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Comparison ~ith (21) then yields 

(At)-I t (F;(t + r)Fj( t  @ ~') drd~'  L,.A~.."t ] --c 
0 

Thus we are led to the following interpretation. If  there were no random 
forces F~, the equation 

D:~G = Hi~[(gJ(;, ~] 

would describe the development of correlations in the set 3I. I f  M is 
dispersionless (,~ = 0) initially, it ren3ains dispersionle~s l~r all times. 
In (21), the term L,.~[<9)l)]--5 L~;[(9] therefore describes the creation of 
correlations due to the correlations of the random forces, while the term 
H~s[Otli), (5] describes the development of these correlations in time, ,shen 
the random forces are "switched off." 

We now define an "entropy"  for each system S ~ 34 by 

,~[91] ----- - -  ~" N.,: log N~, (37) 

This definition comes from 

log/z[9~] =- log(N! /ly) - -  log ]-[ N~! 

With StJriing's formula, we get 

~ [ g t ]  ~ loo_p~[gt] - -  ~ ":' . Io . -C* ,  A' : )  

We consider small deviations from equilibrium and get, with Nk ---- 5"~ q -:- M): 
after expansion up to terms of second order, 

~- ' ----- �89 ~ (v ~/ON~ eNTr M,M,: (38) 

Here ~xe used the conservation laws in the foilov, i~:g form: 

52 M,. 0, -.21~lV,,',tl-lz~ ~ -  0 
k I: 

Then we get for the "forces" Xj[9I] 

Xj[gl] ---- --t~[92]/"bN s = M / N y " )  -~ (39) 

B y  linearizing the equation of motion (28), we get 

D/\: = D 3I ----- ~ '  w(nm i kl) 6,.,(Neq.r -- N~",3'I -- Ne'LI'/; --  N7'r ) 

,,'I t 

+ (At)-1 ] o F,,(t -? "r) dr (40) 
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We now define 

gi} = 5`' u'(mnl kl) 8'z~(N~qS,,~ + Ne%,,, ,,, -- N~e%,,. . -- N~e"8~.) (41) 

Then we can write (40) in the following form: 

*At 

D~,~I = ~ g,s.4ti + (At) -~ [ F~(t + ~-) dr (42,) 
" 0  

We put gisN eq ----- Yi3. Here, the 7,s correspond to Onsager coefficients, as 
can be seen from the following relationsf'~: 

After a short calculation, we get 

)%- ~ F '  w(nm i kl) Areqareq~S = ~ s v n  "" "n',' ,n; ~-~ 3 n  - -  ~lcj  - -  a l j ) ( 3 r n l  -7- 6 . 1  - -  ~ l : i  - -  ~ l i )  

= 1Liy[gleq] (43) 

according to (19). Now, for systems which fulfill the stochastic equation 

( 4 / m )  x~. = - 5" ~/,~.v, + g~(r 

the following equation is valid: 

F..(o~) = 2~,(y~ + y,,,,) 

where 

F,~z0-) = (1/2~r) ~ f exp(--id'r) F~,/oo) doJ 

= (Fz. ( t )F/ t  - -  " r ) )  e q  

These relations can be found in the book of Landau and Lifschitz. (G) Thus 
we have 

Fk~(r) = 8(r)(yk~ + y~) (44) 

Comparison with (36) using (42) shows the validity of this equation for our 
case, too. Perhaps it is useful to see this in another way: At first, we get. 
with (42), (24), and (34), the following equation for the TCF. in agreement 
with (23): 

R(rr vi, r~ + v~ A t ,  U ,  t + At) -- Ri~(t) = At  5` gs~Ri~(t) (45) 
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On the other hand, we get from (42) 

('([M(r, + v, At, v , , t  + A t ) - - M , ] ( A t ) - ' - -  Z g~.~M~ I. 

. * * i \  eq 
• i{[M(r: + v~ At, v~, t + At) -- Mj](At) -1 -- ~ gijv,,1 ) 

J t  

= (At) -z j j ,(F,(t -k r) Fj(t -- r ')) e'' d~- dr'  
0 

For calculation of the left-hand side, we can first replace the value r b~. 0. 
Then, we get with (45) and (24), 

g,,g:~R~t(O) -- 2 ~., g,.sg~,R~AO) 
s , t  s,t. 

At 

= ( / [ / ) - - 2  f f  : F,.(7") F j ( 7 " ) :  eq El .  dT"' 

0 

-With Rn~,(O) = G,e,,a,, = Ne' a 3~, and dropping terms O(A O, we get 

2 t  

--(gs,N eq + gi:Nj eq) ----- (At)- '  t t .:F~(-r) K;(~-') e'' dr, dr' 
0 

o r  

~Jt 

7:: + ~/~, = L,s[ 9leq] = (At) -~ j j 4F,.(~-) F:(~")'/dr dr' 

This is the proof. 
We conclude with the following remarks. We consider an equilibrium 

ensemble of systems which fulfill the stochastic equation (28). With the 
entropy (37), we get the forces (39). 

Linearizing the equation of motion yields the Onsager coefficients (43). 
These give us, according to (43), the correlation of the random forces. Now; 
(20) can be rederived in the following way: If there were no random forces, 
we would have the following equation for ~: 

Di:G = Hi:[(~),  ~] 

The remaining term can be constructed in equilibrium: 

7'iJ + 7'Ji = L i J [ ~ q  
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N o w  we can  rep lace  Aleq~.leq by  ,N:eq,u -eq ~,~ ~,,, . , .-,, ~ G ..... in (43) without changing the 
left-hand side. Replacing 9leq and (Seq by the t ime-dependent  mean values 
(r and ~( t )  then yields 

Di~G = Hi;[(~Jl>, (5] v- L;~[\9~:/, (9] 

which is (21). Perhaps it is possible to go on along this line in order  to get 
equations for the correlations functions in nonequil ibrium for more general 
cases. This would enable as to treat  fluctuation phenomena  in non equilibrium 
for these more general cases, too. 

6. H O R E  R I G O R O U S  D E R I V A T I O N  O F  T H E  E Q U A T I O N  
OF M O T I O N  FOR T H E  TCF 

First, we define 

y~ Nopeq(~) P(.ql [9)5, t) = ~'o(9)L t) (46) 

With ~ ~%'~(')Jl, t) = {No':eq, we can define a new coarse-grained probabili ty 
in/- ' -space by 

((No>eq) -1 2o(9.1~, t) = P~(9)I, t) (47) 

Looking at the master  equat ion (i2), we see that the same equation is valid 
for  P~,  too. The initial condi t ion  for Po is 

Po(OJt, 0) = ((NoS+q) -1 pe~(991) Mo (48) 

Now we can translate all conclusions from the master  equat ion for P(gl [ 9)L t) 
to conclusions from the equation for Po �9 For  example,  defining 

Mo,(t) = ~ Po(:~, t) M, 
(49) 

we get for  these functions, according to (21), the following equat ions o f  
mot ion:  

D~M, = Bd?.R,] § Bd(So] 

D,;Gp = L,~[~))~] q- Li;[(Sp] + H~[93lo, 65o] (50) 

Now we get with (24) and 

Peq(9l) P(92 i g.R, t)(M, -- (M~)ef9 = 0 
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the following equation:  

.Ro~ ~--- (No)eq  Moi - -  ( N o ) e q ( N , ) e q  
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(50 

Thus  a knowledge  of  '33~ is equivalent  to a knowledge of  9~0. With (51) we 
get f rom (50) 

where 

D~R, = ((No)eq) -~ B ~ [ ~ ]  + B,t[9lo] + (No)eq &[(rio] (52) 

B~'[9to] = Y" w(mn i kI) 3~[,(N.)  ,eq Ro,,, ~ ~ :V,,/:eq Ro. 

- -  (N/,,)>eq Roz -2- (N?) ,eq  Ro7,. ] 

The initial condit ions are: 

Roi(O) _= (No: e , l  ~ol 
(53) 

Fur thermore ,  we have 

Di;Go = LCs[gJIo] - -  Hsj[gJl o , 65~] 

F rom the initial condit ions (53), we have 

G,ik.(O) ~ Mo:(O) 8,.:: 

tim Goi~(t) = lim Mo:(r)8i~ 

Therefore  we try the fol lowing ansatz: 

Goi: = 3IoiSi~ + G'o,; 

Insert ing (55) into (54) yields: 

D.6o' = r + H.[~Jlo,  (5o'] 

(54) 

(55) 

(56a) 

(56b) 

Now~ it seems to be hopeless to took for an exact ~olution of  (50). 
Therefore  we confine ourselves to a p roo f  of  consistency. We assume that  
B:[ff)o] and L~:[(So] are negligibiy small on the r.h.s, of  (50). Thus Eqs. (50) 
decouple.  Then we can see if the solutions fulfill our  initial assumpt ions  or 
not. We get 

D i 3 t  o = Bi[9. | i . ]  
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~here: 

The functional ~b has the following remarkable property: 

Z r = B~[g)1o] (57) 
J 

Now, looking at the initial condition Mo , (0 )=  (Ni)  eq -~ (]oi, we can 
linearize (56) with respect to total equilibrium: Mo~(t ) = .f/~,.(t) -r- ,(N/) eq. 
Now, we have: M~i(t) = (N;} eq --' 2%I((ND) eq-1. Thus we get 

.fL,~(t) = R,.,(v.~'k~n) -~. 

Therefore we have 

with 

and 

DiRp = B i ~ [ 9 l o ]  

D,aGo' -~ ~b~J[~o] @ H,,[('J~) eq, (%'] -1- HiJ[91o(<No)ec') -I, (5/1 

- -  ~Nzc),eq Roz - -  , (N/)eq  Rol:) 

_ r eq RD z _ /,.~v, z/\eq R~c ) 

Now we introduce the following norm: 

r !i S I = Max [ S~-jl 
i , j  

(58) 

(59) 

We assume that '~]G/i ~ '  Goil; this is true initially and finally. So we are 
led to the farther assumption that the third term on the r.h.s, of (58) is 
negligibly small. Thus we get 

D i R  o = BiZ[9to] 

DijGo' "~  I'N 1( / ~,: -,e,i)-I + ]-]ij[,(~')eq, (5 / ]  
= , f J L  p J  �9 P /  ] 

(60a) 

(60b) 

(60a) is the linearized Boltzmann equation for the TCF. Now, (60b) is a 
linear inhomogeneous equation. The solution of this equation can be written 
as the sum of the solution of the inhomogeneous equation with the initial 
condition (50'(0) = 0 and of the solution of the homogeneous equation with 

822/4/2/3-2 
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r the initial condit ion Gp~:(0) = --280; 8 ~ .  First, we consider the homogeneous  
equat ion 

Di:~'p = Hi:t\r/gtbect, ~o] 
We can see that  

Ooi: = -- 2Roi Ro~( < N~>eq) -2 (6 I) 

is the solution of  this equat ion.  Our  p rob lem thus reduces to the p rob lem of  
solving the inhomogeneous  equat ion 

D i a G j  = dd~[~Ro](<No>eq) -1 - -  Hij[(91:> eq, fd3p'] 

i with the initial condi t ion Gp,j(0) = 0. 
Before t reat ing this p rob lem,  let us investigate some propert ies  of  

r and Ro,.: . We choose the molecules to be hard spheres. We put  

vi + vj = si: , vi - -  v ,  = g , ;  ( 6 2 )  

With (1 l), we get, after some calculat ion.  

~blj = 8(r , ,  r;)(g/a) -1 L'~,,)V? eq <~N~: eq t 

-F S" e2(g~:) -1 [To(�89 + g,.,e) -5- T,(-.}(s,: - -  gi:e))]~t (63) 
e 

where T~ R (/?v.~eq]-~ The sum runs over all unit vectors e. We have / --a~\\,,i/ / �9 

terms in this sum, where 4 r r g i :  = / c  a. Therefore  we get f = 4 : # ~ c  -2. Now 
let us calculate z ~j[9to], when ~R o has the fol lowing form:  

Ro, = A( ro  , r,. , vo , t )  8(v o , vi)((.Ni> eq (64) 

Then we get f rom (63) 

~blj[~Ro] = {--4~rg:;[3(v~, vl) -7 ?)(vo, v:)] 

o - - I  
+ 2c-g,: 8((vo - -  v~, v~ - -  vj), 0)J 

• k~-(8/a) -~ (N~) eq (N~; eq 8(r~, U) A (65) 

I t  should be noted that  g~j = 0 is forb idden by the exclusion condit ion [see 
(26)]. We now consider two different cases. 

Case  (a) g:: ~ e. 

Only in this case are the terms .-~gT~Z2c a on the r.h.s, of  (65) of  equal  
magni tude  as the first terms. But the second te rm is different f rom zero only 
when vo ~-, c. 
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Case (b) g i j ~  ~ r  ~ c. 

In this case, the second term becomes negligibly small.  Therefore  we can 
drop  the second term, thus obtaining 

r = --�89176 8(r i ,  r~) A ( N i )  eq (Nj} eq g~j[3(vo, vi) 4- 6(vo, v~)] (66) 

o r  

@lj[~o] = ---~rk~ -s ~;(r~, ri)[~]Vi)eq Roj 4- / N j )  eq Ro, ] (67) 

This equat ion is valid whenever  the positive term in r is negligibly 
small.  Now we get f rom (57) and (64): 

~(vo, vi)(-Ni} eq DiAo = �89 eq ~, ~( r l ,  r j ) (Nj )  eq giJ c3(vo, vi) 

- -  �89 S N i ) e q f  No} eq gio (68) 

(68) shows that  (64) cannot  be valid exactly; (68) is not self-consistent. But 
we are led to the following ansatz: 

Ro~ = A(r~ , ri , % ,  t) 8(vo, v,)~ ;~'~ ~q -- S,.  (69) 

with So~ = 0 for  v o = v~. Thus we get 

DiS~ '-- 8(v,, , vi)(Ni} eq DiA o 

--  - - ~ k " - l - 3 A  .(Ni"eq ~ ~(r i rj)(Ni~'eq g~j ~(v o v~.) 
_ _  l ~ D 2 1 - - S A  / ~ \ e q / M  ~ e q  ~. . . . . .  or , - . i /  ,.~'o- gi~ + Bil[~o] (70) 

Therefore  we have 

(No)eq[A( ro ,  r~ + v o A t ,  % ,  t 4- A t )  - -  A(ro,  r~, v o , t)] 

= ---!-rrkal -a A t ( N o  }eq A(ro , ri . v~. t) S" 3(r,. , r i ) (Nj)  eq g~.i 

§ At  ~ '  w(mn kl)  ~(r i ,  rl:) ~(vo, v~,) 

x [(N~,n) eq So,, 4- ~Nn)  eq Stun - -  (N~,) eq Soz - (Nz~ ~eq So~] 

DiSo = -- �89 eq gio 4- Bit[~o] 

(71a) 

(71b) 

for  v i ~7- vp. 
Now,  in first approx imat ion ,  we consider the second term on the right- 

hand  side of  (7 l a) as negligibly small. Therefore  we get the following equat ion 

for  A: 

(A t ) - l [A(ro  , ri + % A t ,  % , t + A t )  - -  A(ro , r i ,  % ,  t)] 

= - -  �89 r~, vo,  t ) (n}  yD (72) 
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with :.)~)yo = 52 8(ri ,  r;)(N/)eqgos. Therefore we get from (72), using 
Aoi(l = 0 )  = 8(re, ri), 

A(ro, r i ,  vo, t) = exp(---}rrke/-a(n) yot) 8(ri -- vd, ro) (73) 

By introducing an iteration process, we now can solve (71b) and then 
check our approximation. For example, we get 

1 .2 - 3  ' , e q  ' , ,eq D,So --=2Trk I Ao~(Ni/ (,N~/ g~o 

For convenience, we choose a new coordinate system (e~, e.~, %) with 
ea = ( v ~ -  % ) , , - 1  (% e.,) = (% %) = (el %) = 0. W i t h  r~o = r , . - -  r~ 

we get 

So~(t) = -- 3,,:~rk2l-a(Nr eq (No) eq 8{,(r~o, e.,), 0) 3((r~o, e.,), 0) 

x exp[�89 -- vd, %)] 

x ~(0 ~< --(r,~ - -  Vit, %) ~< g J )  (74) 

where 

q~(a ~<x <~b)---~ 1 for a -<x  ~ b  

= 0 otherwise 

Equation (74) sho,~.s that the following expression is a good approximatio~ 
for Rot, at least for sufficiently short times: 

Ro~(t) = ~(v~, vi) 3(ri -- rot, r~)(_Ni;~ eq exp(--�89 Yd) (75) 

We now turn to our initial problem. First, we put 

(N~) eq Go~j Fo, (76) 

By (67) and the form of the functional H~j [Eq. (20)], we are led to the atlsatz: 

_Ps = 8((r~j, e0, 0) 8((r~;, %), 0)((d~]i) eq Roj --~ <l'~'])eq R~i) 

X F((r~j, ea), t, g~j) (77) 

For brevity, we write (r~j, %) = d~. From (68), we obtain 

DsjFo' = S(d~, 0) 8(d~, 0)((N~)eq D~Ro + (N~)eqD~R~) F(da , t, g, j) 

+ ~(dl, 0) ~(d2, O)(At)-l(<N~)eq _Roy q- (N~)eq R,i) 

x [F(d~ + g~j A t, t + A t, g~j) -- F(da, t, g~j)] 
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For Hi~[~j], we obtain 

H~[Po' ] = {y"  w(mn j j l)[(<Nn) eq Ro~ + <N~>eq Ron)<N,~jeq-15"ni 

@ (<Nm> eq .Roi + <Ni> eq Rom)<lV,,~> eq g,,~ 

- -  (<Nz>eq Rpi -}- <N/>eq Roz)<Nj> eq 1#~i 

-- (<Nj> eq Roi + <AT/> eq Roj)<gz> eq-pj,)] -r- [i ~-+j] (78) 

where 

f'.~ = 8((ez,  r~) ,  0) 3(@2, r,,i), 0) F ( ( g ~ ,  r.~) gT~ , t, g,,~) 

From the Kronecker delta in w(mH i j l ) ,  we have r,, = r.;. We can see that 

fl'.i = 0, if gni%ri j  (79) 

Now, Ro. contains a Kronecker delta 3(%, v.). Therefore the second column 
of terms in (78) yields 

T~ = < N i S ~ & ' [ 9 % ] : ' . ~  ~- [:<-,j] 

On the other hand, we get 

T1 = ~ '  w(mn ijl)<.~),eq<N~), eq Ro~(F,. + fi,,,~ -- fiz~ --  ~[,) ~- [i .--+j] 

Now, (79) shows that 

~'/ w(mn [jl)(,Nj}ecl<Nz)eq(r E,,,~ --  Fti) 

can be neglected. Therefore we get for T1 

T1 = --FjiRozSrrkal-a( Na)eqQl> Y~ [i +-+ j] (80) 

Thus we get the following equation for F: 

D F  = --  �89 8(d3, O) gij - -  �89 ysF (81) 

The solution of (81) is 

F(da , g~s , t) = --�89 2 exp[--da(gifla) -~ ys<nj �89 q~(O <~ da ~ g J )  

Therefore we have finally' 

FT, is(t) = _�89 exp(_�89 q~(O ~ r~j ~ g.i /)  

X 8(rz, 0) 8(r.,, 0)(<N,> eq Ro~ @ <N;> eq Roi ) (82) 
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with r 1 = (r,, , el). r., --= ( r , j ,  e~). The local values (ri m r , )  become after 
the time Ar  

/"17c = --(k/l)" ~r(,,N i eq R ~ ~,u e~l R , )  (83) 
o l )  / , 

Thus we have the following result: As long as (75) is valid, (60) has the 
following solution: 

G; i, = --  2 R~i R~( :,~ No,; e,~)-'-' 

-- }rr(k/l)'-'. exp(--ri~�89 -/j) ~(0 < ri~ < &7) 

• 8(q , 0) 8(ra , 0)(/,Ni} eq Ros ~ (Nj] e(t R~,)(No]:eq) -1 (84) 

The first term remains valid for all times, while the validity' o f  the second one 
will break down,  but its order  o f  magni tude will not increase, 

After inserting (83) and (61) into BdF, ] ,  we see that  indeed these terms 
are negligibly small, the first being 

r~ = --(k/l)" },,B/[.%] 

and the second one 

To = --2 ~ '  w(mn i/)(<N~)eq)-l(Ro,,R~ - -  R~,R~,j) 

= --2(:{N>>e~t) -1 B,[Nr, ] (85) 

T~ was dropped  initially' by' our linearization; fur thermore,  as long ab 
Ro~ M 8(vo, v,), B~[~Ro] vanishes exactly' because v f  the exclusion condit ion.  
7"1 is negligibly' small because (k/'l) ~ is the ratio o f  the cross section to the 
square o f  the mean free path, and this ratio is, according to our  initial 
assumption negligibly small. In a similar way', we can see that L,j[~o] is indeed 
negligibly small on the r.h.s, of  (50). 
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