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Time-Correlation Function for
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The state of a gas is characterized by occupation numbers of celis in u-space.
The mean values and fluctuations of these numbers are studied with the
help of a master equation. The results are discussed within the framework
of the theory of random forces. An equation of motion of the time-correlation
function (TCF) is derived and it is shown that the temporal development
of the TCF can be described by a linearized Boltzmann equation.
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1. INTRODUCTION

Within the framework of the theory of light scattering, it is necessary to
investigate the time-correlation function (TCF) for certain observables. The
purpose of this paper is to study the TCF for a set of macroscopic observables
—in this case, occupation numbers of cells in u-space—which characterize the
coarse-grained state of a gas. V. Leeuwen and Yip‘® have derived a linearized
Boltzmann equation as the equation of motion for the “*fine™ TCF. Their
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paper takes as its starting point an Ursell expansion of the time-displacement
operator. Since we only deal with macroscopic observables, we choose
another way. Our startirfg point is a master equation for the motion of a
coarse-grained density in I-space. V

In Section 2, we define the coarse-grained TCF. In order to derive an
equation of motion for this TCF, it is necessary to have the equation of
motion for the coarse-grained density. Furthermore, we must have equations
for the mean occupation numbers and their correlations. From these
equations, we immediately get the equation of motion for the TCF in
equilibrium. This can be brought into the form of a linearized Boltzmann
equation with the help of assumptions which are discussed later in Section 6.
Before this more rigorous treatment, we discuss the results within the frame-
work of the theory of random forces in Section 3. It is possible, for instance,
to rederive in this way the equations of motion for the mean occupation
numbers and their correlations. In Section 6, we discuss the assumptions
mentioned above. We introduce a new coarse-grained probability P, in
I-space. The moments of this probability fulfill the same equations as the
mean values de, which are defined in Section 4. By solving these equations.
we see that indeed the linearized Boltzmann equation is a good approximation
for describing the coarse-grained TCF.

The connection between the derivation in Ref. 2 and that given here
will be investigated in greater detail in a succeeding paper.

2. DEFINITION OF THE COARSE-GRAINED TIME-
CORRELATION FUNCTION (TCF)

We consider a set M of systems S with fixed energy E, volume V. and
number of particles N. Each system can be described at any instant ¢ by a
point P(S) = (q,(1), p(z))ef’, where I" is the I™-space, or by the corre-
sponding distribution function

fP(r: p- f) = z 8(1‘ - QV(I)) 8(p - pv(t)) :fP(xz 7)

which is defined on the u-space. We divide the u-space into cells Z, of equal
volume 4 = Adrdp: p =\ Z,, where Z,NZ;, = o for i = j. Each f
vields a set of occupation numbers {N;} defined by

No= [ Fx 1) x(x) d

Yi(x)=1 for xeZ (1)

=0 otherwise
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The set {¥, Is the occupation number vector: {N,; = M. Thus we "have

constructed a coarsening mapping A4 of the set of the distribution functions

into the set of the occupation number vectors: Af = {N,[f]} = N[f]
Now, each 91 corresponds to a domain B[] C I, defined by

PeBR]= A =N 2
The measure of B[N] is
u[) = NI AN/H N, ! (3)

This i1s of course the well-known Boltzmann measure. Now we consider all
systems S in M with P(S)< B{NR] at 1 = 0. All systems will change their
domains according to the Hamilton equations. Thus, after a time 7, some
systems will be found in another domain B{IN]. So we are led to the concept
of a transition probability. We do not discuss here the difficulties involved.
Let P(9 | 9K, 7) be the probability of finding the vector YN after the time .
Then we get the following expression for the probability of finding a system S
which transforms during the time ¢ from B[N} into BWi]:

POLIL ) = PO 0) POV 9L, 1) (4
Now we can define the TCF:

Kj_;(f, T) == JZ P(‘Jt, t) P(\Jt i \).R, 'T)\ 1'\V[Z'A{j ( d
<N

h
~

If we want to-calculate the TCF for an equilibrium ensemble M, we must
know P[] and P(I | M, 7). This can be done with the help of the master
equation of Ludwigt® In the next section, we give a short derivation of this
- equation,

3. EQUATION OF MOTION FOR THE TRANSITION
PROBABILITY P(91 | M, ©)

The cells Z, can be labeled by the coordinates of their centers. Each
system is assumed to change only due to binary collisions and streaming.
The length / of the space cell is choosen to be much larger than o'* = k,
where ¢ is the cross section. Therefore each collision occurs in a well-defined
space cell. Each system which is scattered into a domain B[R] during a time
At is found immediately before in a domain B[N + 7.}, with

N+ )y = N, + 8ir -+ 85p — 84 — 8y
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§,, being the Kronecker symbol. Conservation of energy and momentum
yields

2 , 2 y2 v~ v v
v v e v+ VA Vit ViZE YV

where v = m~1p. Furthermore, we have r, = r; = r, = r;. In the same
way, we describe a system scattered out immediately after the collision by a
vector M + 7.,y . Therefore we need to count only these collisions for
calculation of the collision balance. We now ask for the probability
PO -+ 7m0 0 M, A1), The concept of probability only makes sense if the
systems in B[N - 7,;,,] can be regarded at any instant as distributed at
random, This corresponds to the Markov assumption. Furthermore, we
assume the validity of the Stosszahilansarz in the form given below. This
ansatz yields the right number of collisions (v, , v;} — (v, , v;) in the mean,
where the mean value is taken over a set of independent systems in
B[R + 7:;1,]- This assumption is more general than the corresponding one
for a single system. We now turn to the influence of the streaming processes.
If there were no collisions, each system in B[N] would move into B{N']
during 4, where 9t is defined as follows:

N(r, + v, dt, v) = (W)(r,, v) = N,
These remarks are made in order to clarify the following formalism.
The temporal change of P(91 1 W, 1) is described by
POUW, L) = (D1 )+ 40N (6)
with '
(1M =[] SMN; = 5(M, N)
RLQTM) = 35" wlif | kD) NN, SR M — q:0.)
- 3wl i) SN, M) NN,

The prime indicates that the sum excludes all terms with (ij) = (k/). Further
on, we need

PR IM,t+1) =S POR|R, 1) PR M, 1) (7)
R

where 1, ¢" > 0. From 3y POt M, At) = 1, we have
YAMIQIWM =0 (8)
jUN

Therefore we get

GROIM=— 5 M QIM

N M
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For w(ij | kD). we get from the above remarks
w(ij | k) = o(ij | kIXdv, dv,/dr) 8(x, , ;) 8(r; ., 1) 6(r,, ;). (9)

o(ij | kl)' is the usual differential cross section as it appears in the Boltzmann
equation written down in the cell language:

]v(rz' + V[Af, Vz' » ¢ + Ar) - N(ri s vz‘ s f)
= At 2'(dv, dv,jdr) o(if | KIXN N, — N;N,) (10)
For hard spheres, for instance, we get
a(ij | nm) = k28(v,, + v s Vi V)0V, + v.2,vE L vHer (1)
where ¢ is the length of the velocity cell. Therefore dv = ¢2. ‘\ow olij k)
is assumed to have the following symmetry properties:

o(ij | kI) = o(kl! ij) = aji | kI) (12)

From (6)-(8), we have, after a short calculation,
| PRI, £+ At) — P(R| M, £) |
= 340} w(ij | kDY M, + 1Y(M; + 1) PR+ 9500)
— Z'w(ij PkD M MGP(I IR )} (13)
This is the master equation. For more exact derivations of this equation,

see Schroter® and Forster®. It is possible to show the validity of an
H-theorem by use of the functional

SIPO M, 0] =T p(R | M, 7) log p(R M, 1) u[IN] (14)
Rl

with P(Jt 19, £) = u[IN] p(9 | M, ). This H-theorem yields®
!Lrg PO M, 1) = pu[M] D, D = const (13)

4. EQUATIONS OF MOTION FOR THE MEAN VALUES (M)
AND (MM))
We have
(M) =Y p(%t| M, 1) w[N] M.
MMy =, p(R | M, 1) w[M] MM
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We multiply (13) by M;, M, M;. We define
MMy = (MM + Gy (16)

With the symmetry properties of w(ij | k/) [Eqgs. (12)] and the properties of
p[Dt], we get, after summation,
[<M>(rz + vi AI', v, t + A[) - <1W>(.ri s Vi f)](At)"l

= D, M> (definition)

= Z, w(mn . U)[<Mn>/1wm> - <\Mc><M)\] - Z, W(IZ/J? i U,)[Gnm - Gz'j]

‘ a7

Whenever it is necessary, we write instead of {M;> more accurately
(M (r;,v;). Equation (17) agrees with (10) except for the second term on
the r.h.s. of (17), so that (17) is more general than the Boltzmann equation.
Adalogously, the assumptions

MMMy = KMOIMpAM) + KM G - KM G+ <M> Gy (18)
yields the following equation for G; :
YANG(r, + v, Ay, + vy de, v, v, F -+ Af) — G ()]
= DG (definition)
= %ZI w(mn | kY8 + 8y — 8 — Snz)ﬁgm -+ 8jz — 8 — 85,)
K AMp ) AM = G)
+ [ wlmn | M) Gui 4 <MD Gy
=AMy Gy — M Gy) + i j}] (19)
Equation (18) seems to be an ad hoc assumption, but its consequences in (19)
can be clarified by a heuristic argument: we are only interested in the macro-
scopic properties of the system. Ludwig™ has shown that this leads in a
natural way to (19). We now introduce the following abbreviations:
3 wlmn L MMy — (M M) = B
Y w(mn LN Gun — Gy) = B[6)]
%Zl w{mn kI8, + 8,y — 85 — Sin)(gﬂc + 85 — 8im — S X MM ;>
= L,;[<0]
EZ/ wimn | kD)8 + 84 — 8, — 8:) ik + 851 — By — 8;) Gn
= L;[®]
(5wl M, Gy + (ML G — <My Gy — <My Gi)] + [i e ]
= H;[(M, 6]  (20) .
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Thus we have for (16) and (19)
DM = BCDD] + BO]
DG = Ly[KPO] + Ly[0] + Hu[DD, 0] 20
In addition, we give some remarks on the order of magnitude of the cells.

The Strosszahlansat: for a single system can be justified only for times 47 ~ ¢,
with #; = A{)~%, A being the mean free path. Therefore we choose

>~ A 22)

since smaller lengths yield finer properties, which cancel out by coarsening
in time. Furthermore, the cells Z; with | r,;| < {¢> should contain many
particles, because the occupation numbers N, are macroscopic observables.
For (¢, we have (¢) = (2kTm=)/2 = b~1/2. If we demand, for example,
that

Ny — (NN < e
we get

€1 < N o n(br-1P32 Ar dv
Therefore we have

(4v) b3 = 732 [n(4r) ]!
Let us choose, for instance,
n=23x 10" cm3 | =10-% cm: e = 1073

Then we get .
c{vd™t = 1/20 (23)

We now are able to write down the equation for the TCF in equilibrium.
With (5) and (21), we get
(At);l [K(ria Vi r)' + vj At, vJ' H t + At) - Kt](t)]
=Y Du[RIB,LI] + B,[6G]) 29
M
Here, {M{(¢), ®(+) are solutions of (21) with the initial conditions

IM(0) = N, B(0) = 0. When G is dropped and the remaining Boltzmann
term is linearized with respect to equilibrium, the result is

DiK; = Z, w(kl | jm)({ M58 Ky + (MR Ky,
- <‘M§>eq Kim - <Mm>eq Kz‘?,‘) (25)
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where we have used the fact that B,[<9 .e1] = 0. We see at once that

Ry = 3 Dp[R]POU M )N, — (No)M; — (M0 (26)

VLA

fulfills (25), too, with the initial condition
Rif0) = 3 Du[RY(N, — (NN, — (N o)
= Nea g, (27)

This result agrees with Ref. 1. In a following section. we derive equations
which enable us to test the validity of this equation.

5. RELATION TO THE THEORY OF RANDOM FORCES

We describe the motion of any system S € M by the following stochastic
equation:

D,M[S} = B,I[S]] + (d1)-* (‘” Fit = 7)[S] dr (28)

0

where 9R[S] is the vector, which corresponds to S. Taking the mean value,
we get

a4t
DXM) = BEID] + BO]+ (@) | CFitt + 7)) dr
0
Comparison with (21) yields
4t
Ay [T F 4 ) dr =0 (29
0

S correspends to a random variable in B[], So. taking the mean value over
all S can be performed in the following way:

YPSAS) =3 POR) > P(SIM AWS)
s ™m SeB[IN

where A(S) is an observable depending on S and P(S  9t) is the conditional
probability. From the definition of 63, we get

DG = (At [CM(x, + v, At, v)) M(x; + v, A, v) (¢ + A1) — (MM, (1)
— M (x; + v, A, v (e + AKX My - vy Ae, v)s(t = 48
+ MM ()] ‘ (30)
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Inserting (28) into (30) yields, after a short calculation,
DG = [KMBMPA1) + (A1) <M Ft + ) dT> (M BN,
+ 3 41 KB B[]y — § Ae(B[MP<B;M])

+ 1o <J:t f:t Ft+ n)Fit + ) dr dT'>

+ (B [ F+ ) dr)] + i) (31)
0
With (18) and (21), we get, after dropping terms O(Al), from (31),

D4G = H,[W, 6] + [(dr) <M Fit +7) d1—>
. <Bi[*JJl] J“” Fit + 7) df>
(1]

+ 21
= 34! Flt+ 7)) Ft + 7ydrde

0

+ [i /] (32)

From the Markov assumption, if follows that

S P(S|IMM) A[S} = A[MN]
sed[m]
is completely defined by 9, because P(S | ) does not depend on the time ¢
and the probability P(9, ¢). Now let us suppose that

Y P(S| M) F[S] = F;{3n] (33)
Sed[m) . , .
is different from zero. We consider an ensemble with ® = 0 and <9, = I
initially. Then we have

<J.0 Fi(r) d7'> JO ; P() P 0] dr
(34)

= | F[Wdr=0
0

from (29), in contradiction to our supposition. Therefore we get from (32)

A7

D,G = (dt) J' j‘ (F{t + 7)Ft + 7)) dr dr’ + Hy [0, 6] (35)
V]



92 Otto Seeberg

Comparison with (21) then yields

AN

(At ) 5 t+ TV F{t 7)) drds = LM ]+ L.[®]  (36)

Thus we are led to the following interpretation. If there were no random
forces F; , the equation
DG = Hy[KM;, ©]

would describe the development of correlations in the set M. If M 1
dispersionless {® == 0) initially, it remains dispersionless for all times.
In (21), the term L,[{PL] + L,[6] therefore describes the creation of
corre}anons due to the correlations of the random forces. while the term
H;[<M>, B] describes the development of these correlations in time, when
the random forces are “switched off.”
We now define an “entropy” for each system S € 3 by

SN = —3 N.log N, @3N
This definition comes from
log u[N] = log(V! 4Y) — log TI V!
With Stirling’s formula, we get
S[N] = log u{N] — log(N! 4™)

We consider small deviations from equilibrium and get, with N, = N4 = A,
after expansion up to terms of second order,

CS[N] = S[Rea] + 1Y (BS[eN, eN){Rea] MM, (38)

Here we used thé conservation laws in the following form:

Z M, =0, X v, 2M, =0

k k
Then we get for the “forces” X,;[N]
X9 = —o@G[RN]/eN, = M (Ns1)~* (39)
By linearizing the equation of motion (28), we get

DN = DA =Y wlmm ' k)8, (NeOM - Neulf — Newl — Neajf )

+ (4nt “‘” Fi(t -+ 7) dr (40)
Jo
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We now define
S z w(nm k) b ]\e“b o NSy o — NEgus . — N,e“éllj) (41

Then we can write (40) in the following form:
DM = Z giM; + ()™t l Fr 4 ) de (42)

We put g,;Ni% = v,; . Here, the y,; correspond to Onsager coefficients, as
can be seen from the following relations®:

I[N EN;EN, = By > &b = v
After a short calculation, we éet
yii = 3 Y, wlnm | kl) NI°NG, (8,,,/ L, = 845 — 0508 -+ 8,y — Oks _ 8
= 1L ,[9te4] \ . 43
according to (19). Now, for systems which fulfill the stochastic equation
(ddr) x, = — Y viuXy + F(t)
the following equation is valid:

Flm(w) = 277(le + ')/ln«)

where
Fu() = (127" [ exp(—iwr) Fiufw) do
= (F{r) [t + 7))ea

These relations can be found in the book of Landau and Lifschitz.®® Thus
we have

F(7) = 8(r )y + vu) : (44)

Comparison with (36) using (42) shows the validity of this equation for our
case, too. Perhaps it is useful to see this in another way: At first. we get.
with (42), (24), and (34). the following equation for the TCF. in agreement
with (23):

R(ri > Vi, I + ¥ At > Vi, t + Af) - R?'j(r) = A, Zgist'c‘((‘) (45)
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On the other hand, we get from (42)

<( M, — v, At, v, , t 4= Ar)y — M J4r)? Zgz M. '

eq
X (.[M(rj—;—v,»At, v, t = 41y — M4yt — ZM > l
4z '
= (d1)=2 _H {Fft + 7y F(t = 7'),8 dr dr’
0

For calculation of the left-hand side, we can first replace the value r by O,
Then, we get with (45) and (24),

Z gz’sgth Z gqngtRst
s,t 8.t

— (4t [Z gisRi0) — Y gisRJ‘s(O)]

= (d1) Jf CFiAr) FAe') €4 dr d7'

‘With R,,(0) = G?f}” = Ny Oum and dropping terms O(dr), we get
4

—(g; ;N8 L g NRY = (41 H ‘Filr) Fi(7'). ¢ drdr’
‘o

St

or
) Al
vi+ v = Lol = (@D [ [ CF(r) Fe')> dr de
o

This is the proof.

We conclude with the following remarks. We consider an equili bnum
ensemble of systems which fulfill the stochastic equation (28). With the
entropy (37), we get the forces (39).

Linearizing the equation of motion yields the Onsager coefficients (43).
These give us, according to (43), the correlation of the random forces. Now,
(20) can be rederived in the following way: If there were no random forces,
we would have the following equation for :

D;;,G = H;[(3>. 6]
The remaining term can be constructed in equilibrium:

yi T vie = Ly[9ted]
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o4 G in (43) without changing the
left-hand side. Replacing Me4 and G by the time-dependent mean values
{Itx(1) and G(r) then yields

Now we can replace NJINSY by NJON

b e

DG = Hy[W, 6] + L[, B}

which is (21). Perhaps it is possible to go on along this line in order to get
equations for the correlations functions in nonequilibrium for more general
cases. This would enable us to treat fluctuation phenomena in non equilibrium
for these more general cases, too.

6. MORE RIGOROUS DERIVATION OF THE EQUATION
OF MOTION FOR THE TCF

First, we define

Y N, PR P(M M, 1) = N, (M, 1) (46)
gt

With 3 N, (O, £) = (N,>e4, we can define a new coarse-grained probability
in I-space by
(N ey~ N, 1) = P, 1) (47)

Looking at the master equation (12}, we see that the same equation is valid
for P,, too. The initial condition for P, is

P, 0) = (CN,ye0)~1 Pea(si) M, (48)

Now we can translate all conclusions from the master equation for P(9t | Wi, 1)
- to conclusions from the equation for P, . For example, defining

M, (1) =3 PN, 1) M,

A0
Goirl?) = 3. PO, )M — MMy — M) (49)

we get for these functions, according to (21), the following equations of
motion:

DM, = BI,] + B6,]
DG, = L,JM.]+ L[6,] + HM,,6,] (50)
Now we get with (24) and

Y, PeaI) P(% | M, 1)(M; — (M%) =0
SN
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the following equation:
'Rm' == <Np>eq ‘(‘/jai - <Np>eq<Né>eq (51)

Thus a knowledge of M, is equivalent to a knowledge of R, . With (31) we
get from (50)

DiR, = ({N,p*9)7™ B[R] + B//[R,] + N,0% B6,] (52)

where

BlR,] = Z’ w(mn | kI) 8 f[{N,eu R, — N, 1R,
— (N >eU R, — (N ®O R, ]

The initial conditions are:
-Rpi(o) == <*/‘Vp/ e épi

(53)
G,in(0) = (N;3e48; — 8,8,

Now, 1t seems to be hopeless to look for an exact solution of (30).
Therefore we confine ourselves to a proof of consistency. We assume that
B,[®,] and L,;[®,] are negligibiy small on the r.h.s. of (50). Thus Egs. (50)
decouple. Then we can see if the solutions fulfill our initial assumptions or
not. We get

DM, = BJM,]
DG, = Ly[M,] + H,;[N, . 6,] (54)
From the initial conditions (53), we have
G,i(0) == M,(0) 8,
Furthermore, we have
1{1&1 Gult) = }er} M1} 84
Therefore we try the following ansatz:
© Gy = Mydy - Gy (35)
Inserting (35) into (54) yields:

DM, = B[] (56a)
DiiGD/ = ‘/Jii[mlp] - Hij[ﬂ'no s 659'] (56b)
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where:

Y[} = Zr w(mn L kD84, 851 — 84 Sjn) M, M,
The functional ¢ has the following remarkable property:

2 $ulB] = BM,] (57)

Now, looking at the initial condition M, (0) = (N >e@ + §,,, we can
linearize (56) with respect to total equilibrium: M,(r) = M, (1) + (Nyea,
Now, we have: M, () = (N, >*4 - R_((N>ea-1 Thus we get

“Yflf([) = Rw(’("/]vn/\"eq)—l'

Therefore we have

DiRp = B’il[mp]

DuG, = $4IR] + H I8, 6,1 + H RNy, 6,1 )
with
Bil[mp] = ZI W(“n” ! kl) 81:2(<1Vm>eq an - <N71,\"e(] Rpm
— (N84 Ry — {N®4 R,
and
L= E wimn | k1) 6, ({N, 84 R, + (N, ¢ R,
— (N8O R, — (NSO R (59)

Now we introduce the following norm:
1St = Max IS,
,J

We assume that | G," 1 < G, }i; this is true initially and finally. So we are
led to the farther assumption that the third term on the r.h.s. of (38) is
negligibly small. Thus we get

DR, = B/[R,] (60a)

D’ijGD’ = 'l,‘l"g.i[mp](/‘7\!0:‘\6‘1)—*1 "T' Hij['<91\/'e(la (ﬁa'] (6Ob)

(60a) is the linearized Boltzmann equation for the TCF. Now, (60b) is a
linear inhomogeneous equation. The solution of this equation can be written

as the sum of the solution of the inhomogeneous equation with the initial
condition &,'(0) = 0 and of the solution of the homogeneous equation with

822/4/2/3-2
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the initial condition G,,;(0) = —23,, 8,; . First, we consider the homogeneous
equation . :
DG, = H[(9eq, §,]
We can see that ;
G~oii = _zRoiRo)'(<Nn>eq)-2 (61)

1s the solution of this equation. Our problem thus reduces to the problem of
solving the inhomogeneous equation

DG, = PiFICN o)™ - Hy[(0)e9, 6]

with the initial condition G,;(0) = 0.
Before treating this problem, let us investigate some properties of
1R, ] and R,,; . We choose the molecules to be hard spheres. We put

Vot V= Sy, Vi — V¥, = 8 (62)

With (11), we get, after some calculation.

iJ

by = 8(r,, r)(BPB) KX N, e (N, e :‘477( T+ T.)8:
+ Y @) T Usy; -+ gie) = Tdl(sy; — gie))],  (63)
[

where 7,;, = R, ({N,>¢0)~L The sum runs over all unit vectors e. We have [
terms in this sum, where 4ng,;;c = fc. Therefore we get f = 4=g7.c* Now
let us calculate ¢;[R,], when R, has the following form:

R, = A(r,,r;,v,,1)8(v,, v )(Nea (64)
Then we get from (63)
YilR,] = {—4mg, [8(v, . Vi) — 8(v,, v)]
+ 2% 78((v, — v, v — vy), 0))
X KA (N o8 (N, 24 8(r, , ;) A (65)
It should be noted that g;; = 0 is forbidden by the exclusion condition [see

(26)]. We now consider two different cases.

Case (a) g == c.

Only in this case are the terms ~g;'2¢* on the r.h.s. of (63) of equal
magnitude as the first terms. But the second term is different from zero only
when v, ~ c.
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Case (b) g, =~ >
In this case, the second term becomes negligibly small. Therefore we can
drop the second term, thus obtaining

ll‘:;j[ma] = __%ﬂk2[~3 S(ri » rj) ‘A<]Vi>eq ‘/\"‘Vj>eq gij[S(vn ’ vi) + B(VD s vj)] (66)

or
szj[mp] = _':117’1\’2/&3 5(!'2- s rj)[;]\’}z'> ed RDJ 'I_ "/]\/J\/ e Rpi] (67)

This equation is valid whenever the positive term in ,;[R,] is negligibly
small. Now we get from (57) and (64):

5(\’0 ® vi)<Ni>eq D’[AD - ""7Tkzl_3Aa<Ni>eq Z 8(ri . rf)<Nj>eq gii S(VD s vi)

— Ik A (N RN Yed g, (68)

(68) shows that (64) cannot be valid exactly; (68) is not self-consistent. But
we are led to the following ansar::

Rpi = A(rn Ll rz’ . ":) . f) 5( va : vi)(fvi 4 — S”’ (69)

with S,; = 0 for v, = v,. Thus we get

DS, + (v, . V)Nt DA,
= —%'ﬁkzl_:}ADz'{i]vi\/\ e Z S(ri H r»)_){\N}_T;Gq &) 8( AP "[>
- %#k21_3A0i<Ni>eq<Np>eq gz'p '—"_ Bil{eo] (70)

Therefore we have

(NeaA(r, , x; + v, Ar v, t + A1)y — A(r,, r;, v, 1)]
— Imk AN A(r, x, v, ) Y S(r, L r)(Npe g
S+ Ar Y wlmn kD) 8(x; , 1) (v, . V)
X [(Np»ea Sy, + (NS, — (Npea S, — (NpeaS,]  (Tla)

DiSp = _%Wk2l—3Aoi<Ni>eq<Na>eq &io + Bil[eo] (71b)

forv, = v,.

Now, in first approximation, we consider the second term on the right-
hand side of (71a) as negligibly small. Therefore we get the following equation
for A: o

@A, , v, = v, de, v, t + 4ty — A(r, , r;, v, , 1)]
= — kAP A(r, , 1, Y, DDy, (72)
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with 1)y, = > 8(r;, r,){N,>®*0 g ;. Therefore we get from (72), using
Aoi(t = 0) = B(ra 3 ri);
A(ro . vp s [) = exp(——‘}w”(.zl_3<”> %f) 8(1.1' - tha rn) (73)
By introducing an iteration process, we now can solve (71b) and then
check our approximation. For example, we get
DS, = —4mk¥=4,(N;yea(N, e gy,
For convenience, we choose a new coordinate system (e, , e, €;) with

€; = (‘ v)gzps (elze) - (ez eS) - (el e.}) = 0. WIth Fip=T; — I,
we get

S,{t) = — ImkE-S(N YU (N D 8((ry, , €5), 0) 8((ry, , €3), 0)
X exp[%’”kzl'.— 'J/ogz 1<n>(rw V‘l, es)]
X o0 < —(ry, — vit, &5) < git) (74)

where
pla < x < b)y=1 for a<x<b
0 otherwise

I

Equation (74) shows that the following expression is a good approximation
for R,;, at least for sufficiently short times:

Ro(1) = 8(v, , v;) 8(r; — v, TN o4 exp(—dnk Iy y,t) - (75)
We now turn to our initial problem. First, we put
(NG = Ty (76)
By (67) and the form of the functional H;; [Eq. (20)], we are led to the ansar::
Ihy= 8((ry;, e,), 0) 8((ry; , ), 0)(KINV,%Y R,y = (N4 R,))
X F((ry , eg), 1, 84) ) 7
For brevity, we write (r; , e,} = d,,. From (68), we obtain

DijFD} == 8(d1 s 0) B(dz ’ 0)(<‘Nz'>eq DjRo + <Ni>6quRa) F(d:i > 6 gc‘j) ‘
+ 8(dy , 0) 8(dy , OY(Ar) (N> R,; + {N;e1 R,))
X [F(ds -~ gi; At, t + 41, gi5) — F(dy , 1, 8:7)]
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For Hy[Z,'], we obtain

HylT,1 = {3 wlomn | jHICNLY®8 R,y -+ (N2 Ry N, 0 Fy,
+ (N8 Ry 4+ (NDEU R (N, D20 By
— ((ND® Ry 4+ (Nt RY(NpaFy,
— ((N;Y® R, + (ND®I RN DAF, ) + [i ] (78)

where
Fm‘ = ‘5((61 ’ rni)y 0) 8((92 3 rnz’)s 0) F((gm H rm‘) g;;zl * [: gnz')

From the Kronecker delta in w(mmn | jl), we have r, = r;. We can see¢ that
Fm‘ == O’ if gni\“\rﬁ (79)

Now, R,, contains a Kronecker delta 8(v, , v,,). Therefore the second columii
of terms in (78) yields

Ty = Ny®4 BRI F,y + (1]
On the other hand, we get
Ty = Y w(mn | jIXNDRUN D RAF,, + F,;, — F,, — F.) = [i < j]
Now, {79) shows that
Y wimn | XN U Npes(Fy, - F, — Fy)
can be neglected. Therefore we get for T
T, = —F, R, kP3N pean) y; — [i o ] (80)
Thus we get the following equation for F:
DF = —3nk?-238(d;, 0) g;; — 3mk*-3(n) v;F (81)
The solution of (81) is
F(dy, 8455 1) = —m(k/1)? exp[—dy( g% yi{n)> dm] 90 < dy < guit)
Therefore we have finally
Tty = —3m(k/l) exp(—4mk®ryny v,85) 90 <riy < gust)
X8, 0) B, DN Ry + (N R, (82)
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with r, = (r,;, e;). 1, = (r;;, e,). The Jocal values (r, = r;) become after
the time 4=
FXOL B —‘(/\/1) .]: \N eq R e \jV ey R ) (83)

oij

Thus we have the following result: As lono as (75) 1s valid, (60) has the
following solution:

Ghiy = —2R, R (N, 1)

pi

— sm(k/I)? exp(—r 3mg k3, v) o0 <y, < g, 1)

ij=

> 5(}’1 » 0) 5("2 3 0)( <Ni>eq Rai -+ \/}VJ/ el Rm')( i«]va:: eq)—l (84)

The first term remains valid for all times, while the validity of the second one
will break down, but its order of magnitude will not increase.

After inserting (83) and (61) into B,[I,). we see that indeed these terms
are negligibly small, the first being

T, = —(k/D?* 7B R,]
and the second one

T, = =23 wimn KN YR, R, — R,R,)
= —2(N, )t B[R] ®

[N

)

T, was dropped initially by our linearization; furthermore, as long as
R, ~8(v,, v), B,[R,] vanishes exactly because of the exclusion condition.
Ty is negligibly small because (k/1)* is the ratio of the cross section to the
square of the mean free path, and this ratio is, according to our initial
assumption negligibly small. In a similar way, we can see that L ;[(,] is indeed
negligibly small on the r.h.s. of (50).
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